

Table of contents

1	1 Introduction				
2	Change History 2.1 Document Change History 2.2 Board Changes 2.3 PocketBone 2.3.1 Rev A1 2.3.2 Rev A2 2.3.3 Rev A2B	5 5 5 6 6			
3	3.3 Tethered to a PC using Debian Images 3.3.1 Getting Started	7 10 10 10 16 21			
4	 4.1 PocketBeagle Features and Specification 4.2 OSD3358-512M-BSM System in Package 				
5	5.1 Block Diagram	25 25 25 25 27 27 27 28 29			
6	6.1 OSD3358-SM SiP Design 6.1.1 SiP A OSD3358 SiP System and Power Signals 6.1.2 SiP B OSD3358 SiP JTAG, USB & Analog Signals 6.1.3 SiP C OSD3358 SiP Peripheral Signals 6.1.4 SiP D OSD3358 SiP System Boot Configuration 6.1.5 SiP E OSD3358 SiP Power Signals 6.1.6 SiP F OSD3358 SiP Power Signals 6.1.8 SiP F OSD3358 SiP Power Signals 6.1.9 MicroSD Connection 6.10 USB Connector	31			

	6.7	PRU-ICSS 3 6.7.1 PRU-ICSS Features 4 6.7.2 PRU-ICSS Block Diagram 4 6.7.3 PRU-ICSS Pin Access 4	40 40
7	Con	nectors	13
	7.1	Expansion Header Connectors	13
		P1 Header	
	7.3	P2 Header	18
	7.4	mikroBUS socket connections	51
	7.5	Setting up an additional USB Connection	51
8	Poc	ketBeagle Cape Support	3
9	Poc	ketBeagle Mechanical	55
	9.1	9.1 Dimensions and Weight	55
1() Add	litional Pictures	57
1:	1 Sup	port Information	59
	11.1	. Hardware Design	59
	11.2	Software Updates	59
	11.3	Export Information	59
		RMA Support	50

PocketBeagle is an ultra-tiny-yet-complete open-source USB-key-fob computer. PocketBeagle features an incredible low cost, slick design and simple usage, making PocketBeagle the ideal development board for beginners and professionals alike.

License Terms

- This documentation is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
- Design materials and license can be found in the git repository
- · Use of the boards or design materials constitutes an agreement to the boards-terms-and-conditions
- Software images and purchase links available on the board page
- For export, emissions and other compliance, see *Support Information*

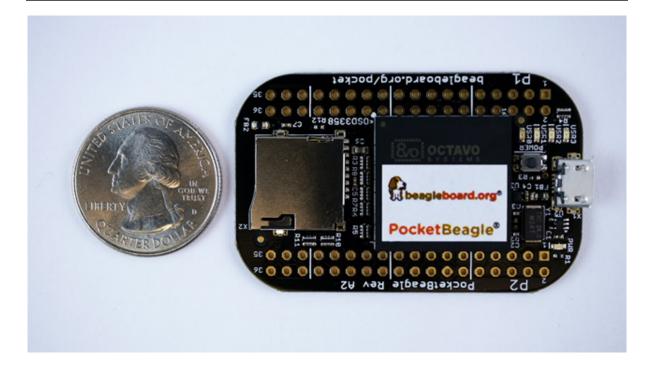


Table of contents 1

2 Table of contents

Introduction

This document is the **System Reference Manual** for PocketBeagle and covers its use and design. PocketBeagle is an ultra-tiny-yet-complete Linux-enabled, community-supported, open-source USB-key-fob-computer. PocketBeagle features an incredible low cost, slick design and simple usage, making it the ideal development board for beginners and professionals alike. Simply develop directly in a web browser providing you with a playground for programming and electronics. Exploring is made easy with several available libraries and tutorials with many more coming.

PocketBeagle will boot directly from a microSD card. Load a Linux distribution onto your card, plug your board into your computer and get started. PocketBeagle runs GNU.Linux, so you can leverage many different high-level programming languages and a large body of drivers that prevent you from needing to write a lot of your own software.

This design will keep improving as the product matures based on feedback and experience. Software updates will be frequent and will be independent of the hardware revisions and as such not result in a change in the revision number of the board. A great place to find out the latest news and projects for PocketBeagle is on the home page beagleboard.org/pocket

Important: Make sure you check the BeagleBoard.org docs repository for the most up to date information.

Fig. 1.1: PocketBeagle Home Page

Change History

This section describes the change history of this document and board. Document changes are not always a result of a board change. A board change will always result in a document change.

2.1 Document Change History

Table 2.1: Change History

Rev	Changes	Date	Ву
A.x	Production Document	December 7, 2017	JK
0.0.5	Converted to .rst and gitlab hosting	July 21, 2022	DK

2.2 Board Changes

Table 2.2: Board History

Rev	Changes	Date	Ву
A1	Preliminary	February 14, 2017	JK
A2	Production. Fixed mikroBUS Click reset pins (made GPIO).	September 22, 2017	JK
A2a	Fixed label on P2_24. Was labeled GPIO48, should be GPIO44.	November 7, 2017	JK
A2b	Because there are 2 TI parts which have long lead-time, we made the following changes:	June 15, 2021	JK
	Use ESD discrete devices instead of integrated TVS TI: TPD4S012DRYR.		
	 Change Logic IC TI SN74LVC1G07DCKR to Nexperia 74LVC1G07GV 		

2.3 PocketBone

Upon the creation of the first, 27mm-by-27mm, Octavo Systems OSD3358 SIP, Jason did a hack two-layer board in EAGLE called "PocketBone" to drop the Beagle name as this was a totally unofficial effort not geared at being

a BeagleBoard.org Foundation project. The board never worked because the 32kHz and 24MHz crystals were backwards and Michael Welling decided to pick it up and redo the design in KiCad as a four-layer board. Jason paid for some prototypes and this resulted in the first successful "PocketBone", a fully-open-source 1-GHz Linux computer in a fitting into a mini-mint tin.

2.3.1 Rev A1

The Rev A1 of PocketBeagle was a prototype not released to production. A few lines were wrong to be able to control mikroBUS Click add-on board reset lines and they were adjusted.

2.3.2 Rev A2

The Rev A2 of PocketBeagle was released to production and launched at World MakerFaire 2017.

Known issues in rev A2:

Issue	Link
GPIO44 is incorrectly labelled as GPIO48	Issue #4

2.3.3 Rev A2B

Because 2 TI parts had a long lead time, we made the following changes:

Chang	ge # Modification	Reference Designators	Part Type	Be- fore?value ?	After@value)
1	Changed C2,C3 from 18pF to 22pF.	C2,C3	Cap Ce- ramic	18pF	22pF
2	Changed Y1 from 24MHz_18pF to 24MHz_22pF.	Y1	Crystal	24MHz_18pF	24MHz_22pF
3	Use ESD discrete devices(D1-D4) to replace U3.	U3	ESD So- lution	integrated	ESD discrete devices(D1-D4)
4	Changed U2 from SN74LVC1G07DCKR to 74LVC1G07GV,125.	U2	Logic	SN74LVC1G07D	74LVC1G07GV,125
5	The PCB Revision for this board is Rev A2b.	The PCB Revision for	or this board	is Rev A2b.	

Connecting Up PocketBeagle

This section provides instructions on how to hook up your board. The most common scenario is tethering PocketBeagle to your PC for local development.

3.1 What's In the Package

In the package you will find two items as shown in figures below.

- PocketBeagle
- Getting Started instruction card with link to the support URL.

Fig. 3.1: PocketBeagle Package

Fig. 3.2: PocketBeagle Package Insert front

Fig. 3.3: PocketBeagle Package Insert back

3.2 Connecting the board

This section will describe how to connect to the board. Information can also be found on the Quick Start Guide that came in the box. Detailed information is also available at beagleboard.org/getting-started

The board can be configured in several different ways, but we will discuss the most common scenario. Future revisions of this document may include additional configurations.

3.3 Tethered to a PC using Debian Images

In this configuration, you will need the following additional items:

- microUSB to USB Type A Cable
- microSD card (>=4GB and <128GB)

The board is powered by the PC via the USB cable, no other cables are required. The board is accessed either as a USB storage drive or via a web browser on the PC. You need to use either Firefox or Chrome on the PC, IE will not work properly. Figure below shows this configuration.

In some instances, such as when additional add-on boards, or PocketCapes are connected, the PC may not be able to supply sufficient power for the full system. In that case, review the power requirements for the add-on board/cape; additional power may need to be supplied via the 5v input, but rarely is this the case.

3.3.1 Getting Started

The following steps will guide you to quickly download a PocketBeagle software image onto your microSD card and get started writing code.

- 1. Navigate to the Getting Started Page beagleboard.org/getting-started Follow along with the instructions and click on the link noted in Figure 5 below www.beagleboard.org/distros. You can also get to this page directly by going to bbb.io/latest
- 1. Download the latest image onto your computer by following the link to the latest image and click on the Debian image for Stretch IoT (non-GUI) for BeagleBone and PocketBeagle via microSD card. See Figure 6 below. This will download a .img.xz file into the downloads folder of your computer.
 - 1. Transfer the image to a microSD card.

Download and install an SD card programming utility if you do not already have one. We like https://etcher.io/ for new users and so we show that one in the steps below. Go to your downloads folder and doubleclick on the .exe file and follow the on-screen prompts. See figure 7.

Insert a new microSD card into a card reader/writer and attach it via the USB connection to your computer. Follow the instructions on the screen for selecting the .img file and burning the image from your computer to the microSD card. Eject the SD card reader when prompted and remove the card. See Figures 8 and 9.

- 1. Insert the microSD card into the board you'll hear a satisfying click when it seats properly into the slot. It is important that your microSD card is fully inserted prior to powering the system.
- 1. Connect the micro USB connector on your cable to the board as shown in Figure 11. The microUSB connector is fairly robust, but we suggest that you not use the cable as a leash for your PocketBeagle. Take proper care not to put too much stress on the connector or cable.
- 1. Connect the large connector of the USB cable to your Linux, Mac or Windows PC USB port as shown in Figure 12. The board will power on and the power LED will be on as shown in Figure 13 below.
- 1. As soon as you apply power, the board will begin the booting process and the userLEDs **Figure 14** will come on in sequence as shown below. It will take a few seconds for the status LEDs to come on, like teaching PocketBeagle to 'stay'. The LEDs will be flashing as it begins to boot the Linux kernel. While the four user LEDS can be over written and used as desired, they do have specific meanings in the image that you've initially placed on your microSD card once the Linux kernel has booted.

Fig. 3.4: Tethered Configuration

Fig. 3.5: Getting Started Page

Fig. 3.6: Download Latest Software Image

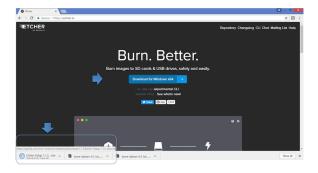


Fig. 3.7: Download Etcher SD Card Utility

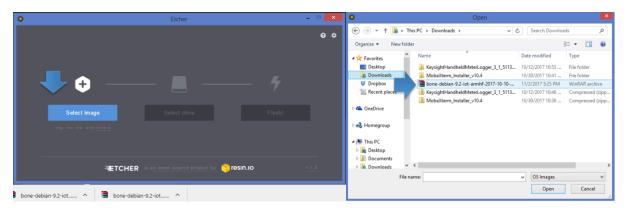


Fig. 3.8: Select the PocketBeagle Image

Fig. 3.9: Burn the Image to the SD Card

Fig. 3.10: Insert the microSD Card into PocketBeagle

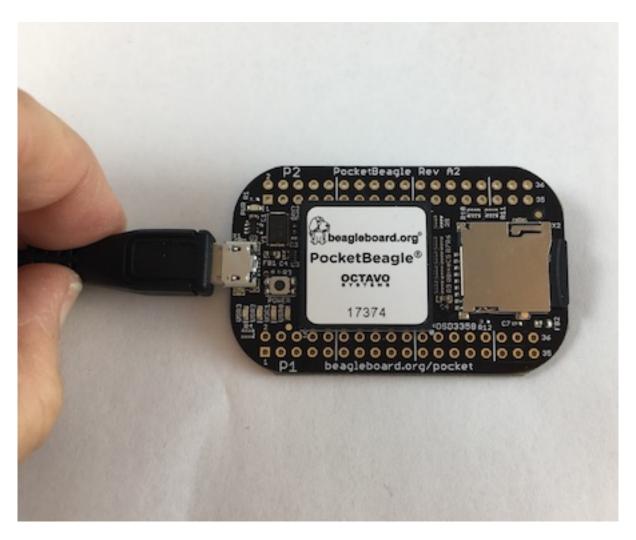


Fig. 3.11: Insert the micro USB Connector into PocketBeagle

Fig. 3.12: Insert the USB connector into PC $\,$

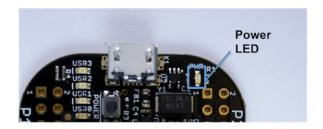


Fig. 3.13: Board Power LED

- USERO is the heartbeat indicator from the Linux kernel.
- USER1 turns on when the microSD card is being accessed
- USER2 is an activity indicator. It turns on when the kernel is not in the idle loop.
- USER3 idle

Fig. 3.14: User LEDs

3.3.2 Accessing the Board and Getting Started with Coding

The board will appear as a USB Storage drive on your PC after the kernel has booted, which will take approximately 10 seconds. The kernel on the board needs to boot before the port gets enumerated. Once the board appears as a storage drive, do the following:

- 1. Open the USB Drive folder to view the files on your PocketBeagle.
- 2. Launch Interactive Quick Start Guide.

Right Click on the file named **START.HTM** and open it in Chrome or Firefox. This will use your browser to open a file running on PocketBeagle via the microSD card. You will see file:///Volumes/BEAGLEBONE/START.htm in the url bar of the browser. See Figure 15 below. This action displays an interactive Quick Start Guide from PocketBeagle.

Fig. 3.15: Interactive Quick Start Guide Launch

1. Enable a Network Connection.

Click on 'Step 2' of the Interactive Quick Start Guide page to follow instructions to "Enable a Network Connection" (pointing to the DHCP server that is running on PocketBeagle). Copy the appropriate IP Address from the chart (according to your PC operating system type) and paste into your browser then add a **:3000** to the end of it. See example in Figure 16 below. This will launch from PocketBeagle one of it's favorite Web Based Development Environments, Visual Studio Code, (Figure 17) so that you can teach your beagle new tricks!

- 1. Get Started Coding with Visual Studio Code IDE blinking USR LEDs in Python.
- 2. Navigate to the code. Select examples/BeagleBone/Black/seqLEDs.py.

Fig. 3.16: Enable a Network Connection

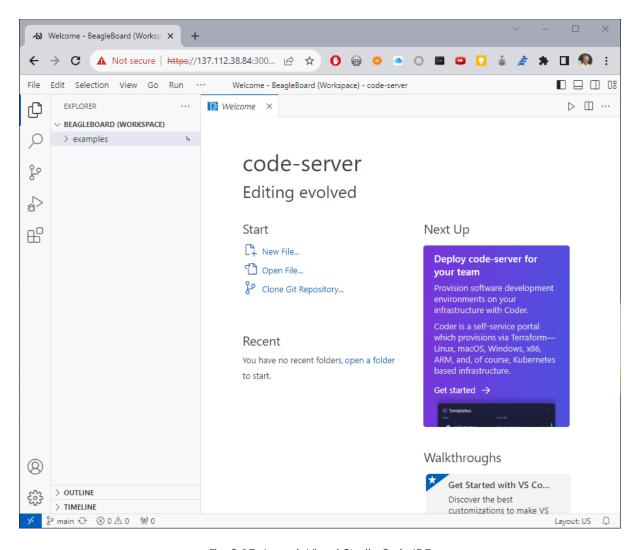
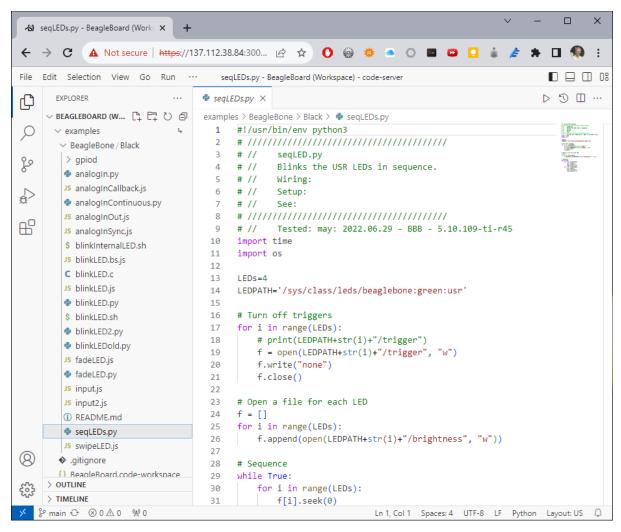
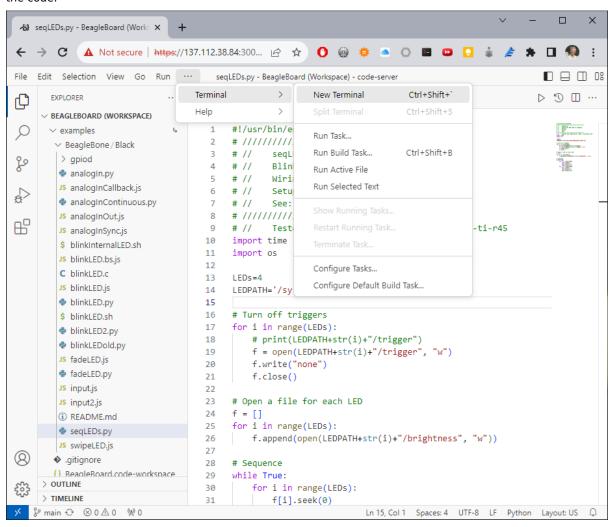



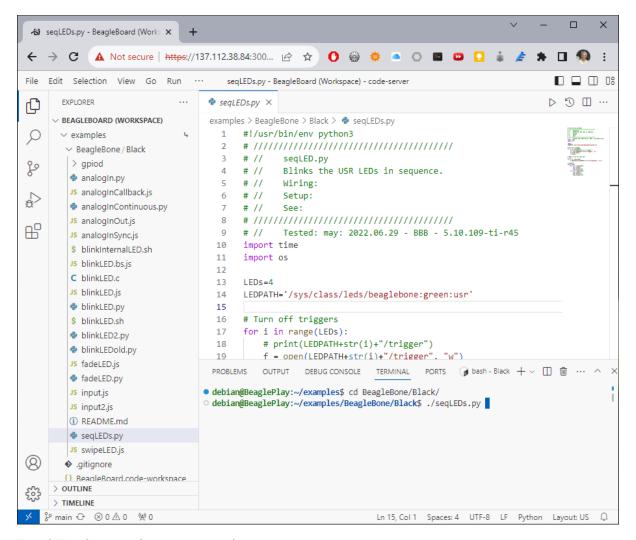
Fig. 3.17: Launch Visual Studio Code IDE

The code should match the code below, if you can't find it, copy and paste the below code into the editor


```
#!/usr/bin/env python3
# // seqLED.py
# // Blinks the USR LEDs in sequence.
# // Wiring:
# // Setup:
# // See:
# // Tested: may: 2022.06.29 - BBB - 5.10.109-ti-r45
import time
import os
LEDs=4
LEDPATH='/sys/class/leds/beaglebone:green:usr'
# Turn off triggers
for i in range(LEDs):
  # print(LEDPATH+str(i)+"/trigger")
  f = open(LEDPATH+str(i)+"/trigger", "w")
  f.write("none")
  f.close()
# Open a file for each LED
f = []
for i in range(LEDs):
                                                          (continues on next page)
```

f.append(open(LEDPATH+str(i)+"/brightness", "w"))

Sequence
while True:
 for i in range(LEDs):
 f[i].seek(0)
 f[i].write("1")
 time.sleep(0.25)


for i in range(LEDs):
 f[i].seek(0)
 f[i].seek(0)
 f[i].seek(0)
 f[i].seek(0)
 f[i].seek(0)

Open a terminal by selecting Terminal/New Terminal (or pressing Ctrl+Shift+`) and execute the code:


```
bone:~$ cd ~/examples/BeagleBone/Black
bone:~$ ./seqLEDs.py
```

You will see the four USR LEDs flashing.

Type CTRL+C to stop the program running.

Powering Down

- 1. Standard Power Down Press the power button momentarily with a tap. The system will power down automatically. This will shut down your software with grace. Software routines will run to completion. | The Standard Power Down can also be invoked from the Linux command shell via sudo halt.
- 2. Hard Power Down Press the power button for 10 seconds. This will force an immediate shut down of the software. For example you may lose any items you have written to the memory. Holding the button longer than 10 seconds will perform a power reset and the system will power back on.
- 3. Remove the USB cable Remember to hold your board firmly at the USB connection while you remove the cable to prevent damage to the USB connector.
- 4. Powering up again. If you'd like to power up again without removing the USB cable follow these instructions:
 - 1. If you used Step 1 above to power down, to power back up, hold the power button for 10 seconds, release then tap it once and the system will boot normally.
 - 2. If you used Step 2 above to power down, to power back up, simply tap the power button and the system will boot normally.

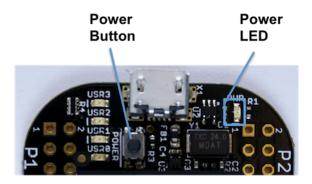


Fig. 3.18: Power Button

3.3.3 Other ways to Connect up to your PocketBeagle

The board can be configured in several different ways. Future revisions of this document may include additional configurations.

As other examples become documented, we'll update them on the Wiki for PocketBeagle PocketBeagle WiKi See also the on-line discussion.

PocketBeagle Overview

PocketBeagle is built around Octavo Systems' OSD335x-SM System-In-Package that integrates a high-performance Texas Instruments AM3358 processor, 512MB of DDR3, power management, nonvolatile serial memory and over 100 passive components into a single package. This integration saves board space by eliminating several packages that would otherwise need to be placed on the board, but more notably simplifies our board design so we can focus on the user experience.

The compact PocketBeagle design also offers access through the expansion headers to many of the interfaces and allows for the use of add-on boards called PocketCapes and Click Boards from MikroElektronika, to add many different combinations of features. A user may also develop their own board or add their own circuitry.

4.1 PocketBeagle Features and Specification

This section covers the specifications and features of the board in a chart and provides a high level description of the major components and interfaces that make up the board.

Table 4.1: PocketBeagle Features

Feature	
System-In-Package	Octavo Systems OSD335x-SM in 256 Ball BGA (21mm x 21mm)
SiP Incorporates	
Processor	Texas Instruments 1GHz Sitara™ AM3358 ARM® Cortex®-A8 with NEON floating-point accelerator
Graphics Engine	Imagination Technologies PowerVR SGX530 Graphics Accelerator
Real-Time Units	2x programmable real-time unit (PRU) 32-bit 200MHz microcontrollers with single-cycle I/O latency
Coprocessor	ARM® Cortex®-M3 for power management functions
SDRAM Memory	512MB DDR3 800MHz RAM
Non-Volatile Mem- ory	4KB I2C EEPROM for board configuration information
Power Management	TPS65217C PMIC along with TL5209 LDO to provide power to the system with integrated 1-cell LiPo battery support
Connectivity	
SD/MMC	Bootable microSD card slot
USB	High speed USB 2.0 OTG (host/client) micro-B connector
Debug Support	JTAG test points and gdb/other monitor-mode debug possible
Power Source	microUSB connector, also expansion header options (battery, VIN or USB-VIN)
User I/O	Power Button with press detection interrupt via TPS65217C PMIC
Expansion Header	
USB	High speed USB 2.0 OTG (host/client) control signals
Analog Inputs	8 analog inputs with 6 @ $1.8 extsf{V}$ and 2 @ $3.3 extsf{V}$ along with $1.8 extsf{V}$ references
Digital I/O	44 digital GPIOs accessible with 18 enabled by default including 2 shared with the 3.3V analog input pins
UART	3 UARTs accessible with 2 enabled by default
I2C	2 I2C buses enabled by default
SPI	2 SPI buses with single chip selects enabled by default
PWM	4 Pulse Width Modulation outputs accessible with 2 enabled by default
QEP	2 Quadrature encoder inputs accessible
CAN	2 CAN bus controllers accessible

4.2 OSD3358-512M-BSM System in Package

The Octavo Systems OSD3358-512M-BSM System-In-Package (SiP) is part of a family of products that are building blocks designed to allow easy and cost-effective implementation of systems based in Texas Instruments powerful Sitara AM335x line of processors. The OSD335x-SM integrates the AM335x along with the TI TPS65217C PMIC, the TI TL5209 LDO, up to 1 GB of DDR3 Memory, a 4 KB EEPROM for non-volatile configuration storage and resistors, capacitors and inductors into a single 21mm x 21mm design-in-ready package.

With this level of integration, the OSD335x-SM family of SiPs allows designers to focus on the key aspects of their system without spending time on the complicated high-speed design of the processor/DDR3 interface or the PMIC power distribution. It reduces size and complexity of design.

Full Datasheet and more information is available at octavosystems.com/octavo_products/osd335x-sm/

4.3 Board Component Locations

This section describes the key components on the board, their location and function.

Figure below shows the locations of the devices, connectors, LEDs, and switches on the PCB layout of the board.

Fig. 4.1: Key Board Component Locations

Key Components

- The Octavo Systems OSD3358-512M-BSM System-In-Package is the processor system for the board
- P1 and P2 Headers come unpopulated so a user may choose their orientation
- User LEDs provides 4 programmable blue LEDs
- Power BUTTON can be used to power up or power down the board (see section 3.3.3 for details)
- USB 2.0 OTG is a microUSB connection to a PC that can also power the board
- Power LED provides communication regarding the power to the board
- microSD slot is where a microSD card can be installed.

PocketBeagle High Level Specification

This section provides the high level specification of PocketBeagle.

5.1 Block Diagram

Figure 22 below is the high level block diagram of PocketBeagle.

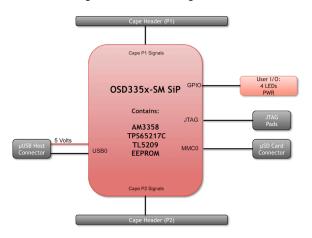


Fig. 5.1: PocketBeagle Key Components

5.2 System in Package (SiP)

The OSD335x-SM Block Diagram is detailed in Figure 23 below. More information, including design resources are available on the 'Octavo Systems Website'

Note: PocketBeagle utilizes the 512MB DDR3 memory size version of the OSD335x-SM A few of the features of the OSD335x-SM SiP may not be available on PocketBeagle headers. Please check Section 7 for the P1 and P2 header pin tables.

5.3 Connectivity

5.3.1 Expansion Headers

PocketBeagle gives access to a large number of peripheral functions and GPIO via 2 dual rail expansion headers. With 36 pins each, the headers have been left unpopulated to enable users to choose the header connector

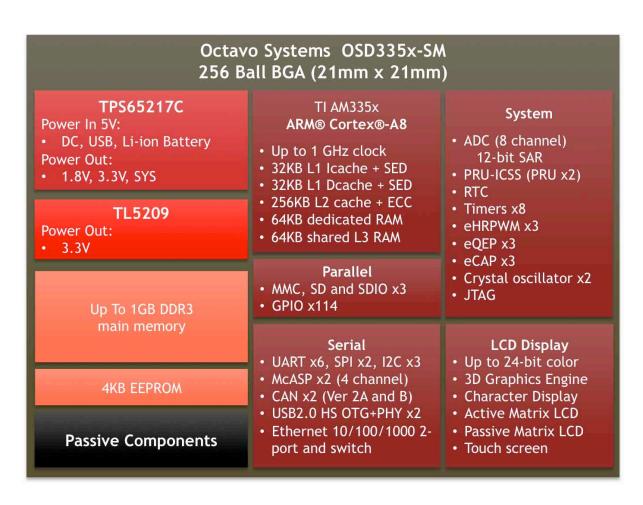


Fig. 5.2: OSD335x SIP Block Diagram

orientation or add-on board / cape connector style. Pins are clearly marked on the bottom of the board with additional pin configurations available through software settings. Detailed information is available in Section 7.

Fig. 5.3: PocketBeagle Expansion Headers

5.3.2 microSD Connector

The board is equipped with a single microSD connector to act as the primary boot source for the board. Just about any microSD card you have will work, we commonly find 4G to be suitable.

When plugging in the SD card, the writing on the card should be up. Align the card with the connector and push to insert. Then release. There should be a click and the card will start to eject slightly, but it then should latch into the connector. To eject the card, push the SD card in and then remove your finger. The SD card will be ejected from the connector. Do not pull the SD card out or you could damage the connector.

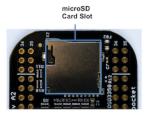


Fig. 5.4: microSD Connector

5.3.3 USB 2.0 Connector

The board has a microUSB connector that is USB 2.0 HS compatible that connects the USB0 port to the SiP. Generally this port is used as a client USB port connected to a power source, such as your PC, to power the board. If you would like to use this port in host mode you will need to supply power for peripherals via Header P1 pin 7 (USB1.VIN) or through a powered USB Hub. Additionally, in the USB host configuration, you will need to power the board through Header P1 pin 1 (VIN) or Header P1 pin 7 (USB1.VIN) or Header P2 pin 14 (BAT.VIN)

Fig. 5.5: USB 2.0 Connector

5.4 Boot Modes

There are three boot modes:

5.4. Boot Modes 27

- **SD Boot**: MicroSD connector acts as the primary boot source for the board. This is described in Section 3
- **USB Boot**: This mode supports booting over the USB port. More information can be found in the project called "BeagleBoot" This project ported the BeagleBone bootloader server BBBlfs(currently written in c) to JavaScript(node.js) and make a cross platform GUI (using electron framework) flashing tool utilizing the etcher.io project. This will allow a single code base for a cross platform tool. For more information on BeagleBoot, see the BeagleBoot Project Page.
- **Serial Boot**: This mode will use the serial port to allow downloading of the software. A separate USB to TTL level serial UART converter cable is required or you can connect one of the Mikroelektronika FTDI Click Boards to use this method. The UART pins on PocketBeagle's expansion headers support the interface. For more information regarding the pins on the expansion headers and various modes, see Section 7.

Table 5.1: UART Pins on Expansion Headers for Serial Boot

H eader.Pin	S ilkscreen	Proc Ball	SiP Ball	Pin Name (Mode 0)
P1.22	GND			GND
P1.30	U0_TX	E16	B12	uart0_txd
P1.32	U0_RX	E15	A12	uart0_rxd

If the Serial Boot is not in use, the UARTO pins can be used for Serial Debug. See Section 5.6 for more information.

Software to support USB and serial boot modes is not provided by beagleboard.org. Please contact TI for support of this feature.

5.5 Power

The board can be powered from three different sources:

- · A USB port on a PC.
- A power supply with a USB connector.
- Expansion Header pins.

Note: VIN-USB is directly shorted between the USB connector on PocketBeagle and USB1_VI on the expansion headers. You should only source power to the board over one of these and may optionally use the other as a power sink.

The tables below show the power related pins available on PocketBeagle's Expansion Headers.

Table 5.2: Power Inputs Available on Expansion Headers

H eader.Pin	S ilkscreen	Proc Ball	SiP Ball	Pin Name (Mode 0)
P1.01	VIN		P10, R10, T10	VIN
P1.07	USB1_VI		P9, R9, T9	VIN-USB
P2.14	BAT_+		P8, R8, T8	VIN-BAT

Table 5.3: Power Outputs Available on Expansion Headers

H eader.Pin	S ilkscreen	Proc Ball	SiP Ball	Pin Name (Mode 0)
P1.14	+3.3V		F6, F7, G6, G7	VOUT-3.3V
P1.24	VOUT		K6, K7, L6, L7	VOUT-5V
P2.13	VOUT		K6, K7, L6, L7	VOUT-5V
P2.23	+3.3V		F6, F7, G6, G7	VOUT-3.3V

H eader.Pin	S ilkscreen	Proc Ball	SiP Ball	Pin Name (Mode 0)
P1.15	USB1_GND			GND
P1.16	GND			GND
P1.22	GND			GND
P2.15	GND			GND
P2.21	GND			GND

Note: A comprehensive tutorial for Power Inputs and Outputs for the OSD335x System in Package is available in the 'Tutorial Series' on the Octavo Systems website.

5.6 JTAG Pads

Pads for an optional connection to a JTAG emulator has been provided on the back of PocketBeagle. More information about JTAG emulation can be found on the TI website - 'Entry-level debug through full-capability development'

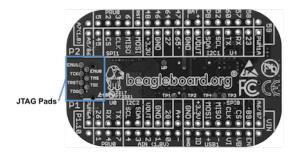
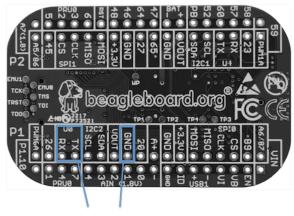



Fig. 5.6: JTAG Pad Connections

5.7 Serial Debug Port

Serial debug is provided via UARTO on the processor. See Section 5.3.4 for the Header Pin table. Signals supported are TX and RX. None of the handshake signals (CTS/RTS) are supported. A separate USB to TTL level serial UART converter cable is required or you can connect one of the Mikroelektronika FTDI Click Boards to use this method.

Serial Debug Connections

5.6. JTAG Pads

If serial boot is not used, the UART0 can be used to view boot messages during startup and can provide access to a console using a terminal access program like Putty. To view the boot messages or use the console the UART should be set to a baud rate of 115200 and use 8 bits for data, no parity bit and 1 stop bit (8N1).

Detailed Hardware Design

The following sections contain schematic references for PocketBeagle. Full schematics in both PDF and Eagle are available on the 'PocketBeagle Wiki'

6.1 OSD3358-SM SiP Design

Schematics for the OSD3358-SM SiP are divided into several diagrams.

- 6.1.1 SiP A OSD3358 SiP System and Power Signals
- 6.1.2 SiP B OSD3358 SiP JTAG, USB & Analog Signals
- 6.1.3 SiP C OSD3358 SiP Peripheral Signals
- 6.1.4 SiP D OSD3358 SiP System Boot Configuration
- **6.1.5** SiP E OSD3358 SiP Power Signals
- 6.1.6 SiP F OSD3358 SiP Power Signals

6.2 MicroSD Connection

The Micro Secure Digital (microSD) connector design is highlighted in Figure 35.

6.3 USB Connector

The USB connector design is highlighted in Figure 36.

Note that there is an ID pin for dual-role (host/client) functionality. The hardware fully supports it, but care should be taken to ensure the kernel in use is either statically or dynamically configured to recognize and utilize the proper mode.

6.4 Power Button Design

The power button design is highlighted in Figure 37.

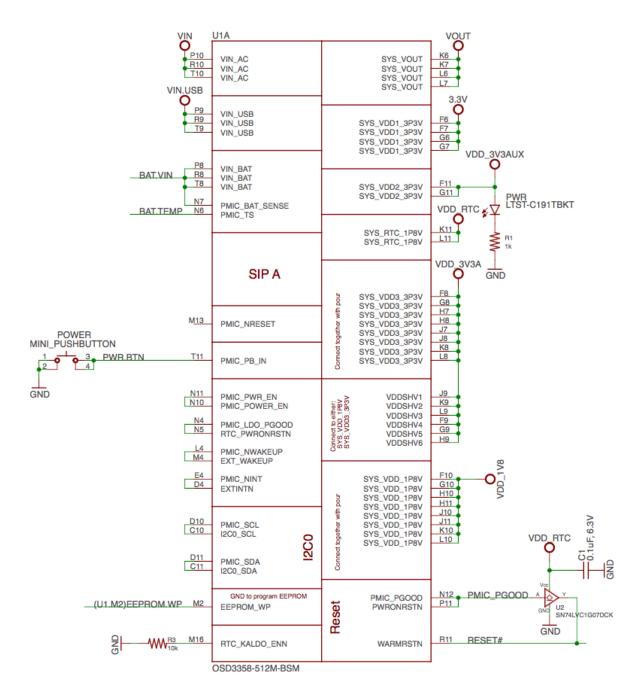


Fig. 6.1: SiP A OSD3358 SiP System and Power Signals

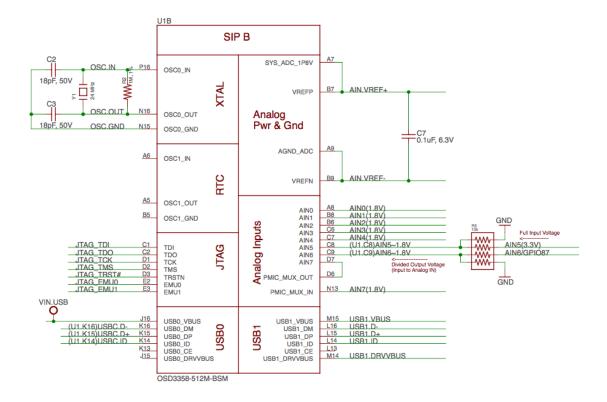


Fig. 6.2: SiP B OSD3358 SiP JTAG, USB & Analog Signals

6.5 User LEDs

There are four user programmable LEDs on PocketBeagle. The design is highlighted in Figure 38. Table 6 Provides the LED control signals and pins. A logic level of "1" will cause the LEDs to turn on.

LED	Signal Name	Proc Ball	SiP Ball
USR0	GPIO1_21	V15	P13
USR1	GPIO1_22	U15	T14
USR2	GPIO1_23	T15	R14
USR3	GPIO1 24	V16	P14

Table 6.1: User LED Control Signals/Pins

6.6 JTAG Pads

There are 7 pads on the bottom of PocketBeagle to connect JTAG for debugging. The design is highlighted in Figure 39. More information regarding JTAG debugging can be found at 'www.ti.com/jtag'

6.7 PRU-ICSS

The Programmable Real-Time Unit Subsystem and Industrial Communication SubSystem (PRU-ICSS) module is located inside the AM3358 processor, which is inside the Octavo Systems SiP. Commonly referred to as just the "PRU", this little subsystem will unleash a lot of performance for you to use in your application. Consisting of dual 32-bit RISC cores (Programmable Real-Time Units, or PRUs), data and instruction memories, internal peripheral modules, and an interrupt controller (INTC). The programmable nature of the PRU-ICSS, along with their access to pins, events and all SoC resources, provides flexibility in implementing fast real-time responses,

6.5. User LEDs 33

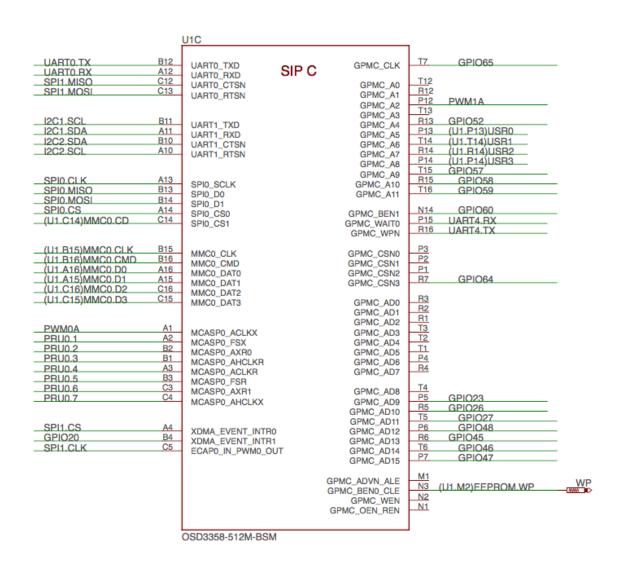


Fig. 6.3: SiP C OSD3358 SiP Peripheral Signals

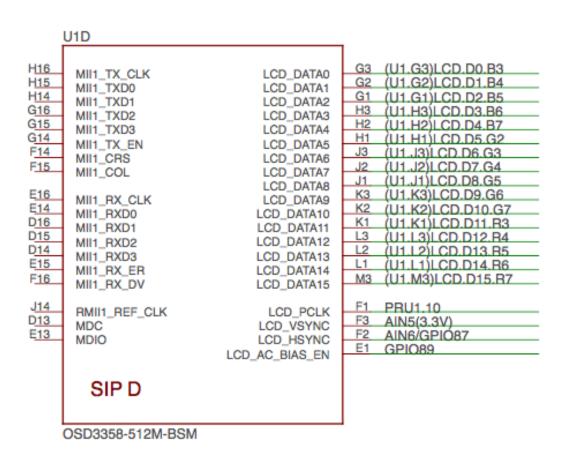


Fig. 6.4: SiP D OSD3358 SiP System Boot Configuration

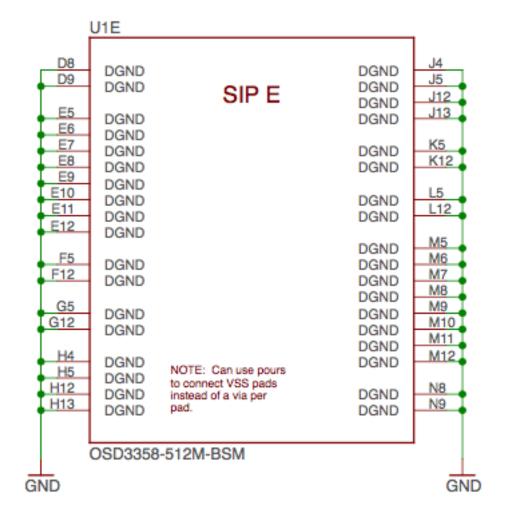
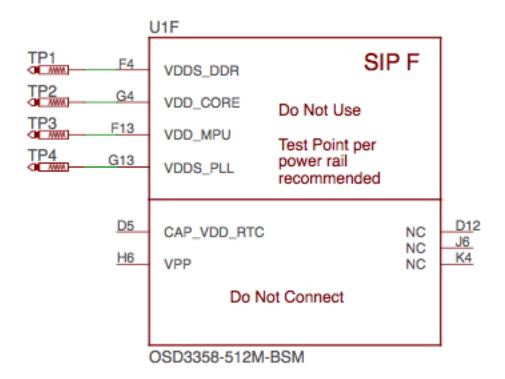



Fig. 6.5: SiP E OSD3358 SiP Power Signals

uSD Connector

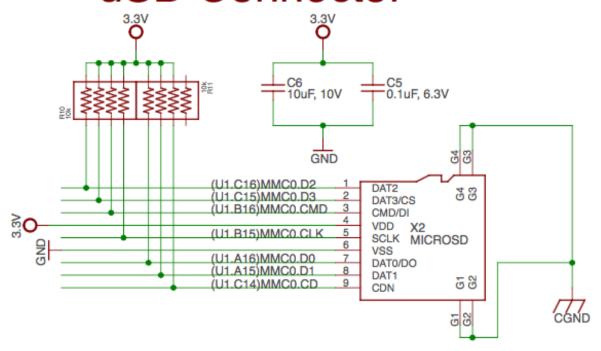


Fig. 6.6: microSD Connections

USB Device

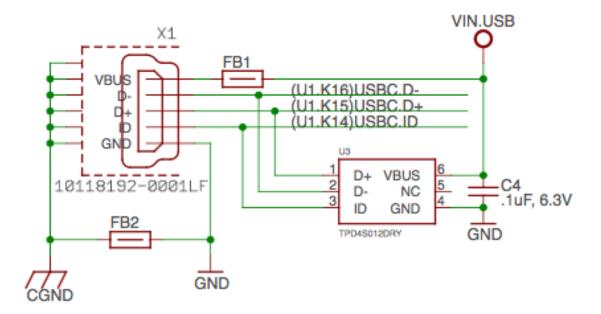


Fig. 6.7: USB Connection

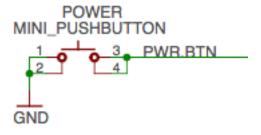


Fig. 6.8: Power Button

USER LEDs

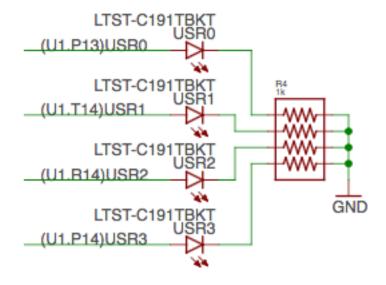


Fig. 6.9: User LEDs

JTAG Pads

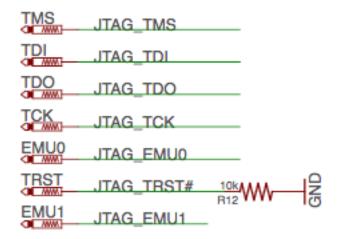


Fig. 6.10: JTAG Pads Design

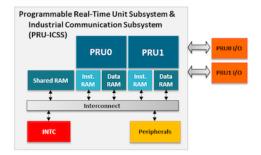
specialized data handling operations, custom peripheral interfaces, and in offloading tasks from the other processor cores of the system-on-chip (SoC). Access to these pins is provided by PocketBeagle's expansion headers and is multiplexed with other functions on the board. Access is not provided to all of the available pins.

Some getting started information can be found on https://beagleboard.org/pru.

Additional documentation is located on the Texas Instruments website at processors.wiki.ti.com/index.php/PRU-ICSS and also located at http://github.com/beagleboard/am335x pru package.

Example projects using the PRU-ICSS can be found in pru-cookbook-home.

6.7.1 PRU-ICSS Features


The features of the PRU-ICSS include:

Two independent programmable real-time (PRU) cores:

- 32-Bit Load/Store RISC architecture
- 8K Byte instruction RAM (2K instructions) per core
- 8K Bytes data RAM per core
- 12K Bytes shared RAM
- · Operating frequency of 200 MHz
- · PRU operation is little endian similar to ARM processor
- · All memories within PRU-ICSS support parity
- · Includes Interrupt Controller for system event handling
- Fast I/O interface
- 16 input pins and 16 output pins per PRU core. (Not all of these are accessible on the PocketBeagle. Please check the Pin Table below for PRU-ICSS features available through the P1 and P2 headers.)

6.7.2 PRU-ICSS Block Diagram

Figure below is a high level block diagram of the PRU-ICSS.

6.7.3 PRU-ICSS Pin Access

Both PRU 0 and PRU1 are accessible from the expansion headers. Listed below are the ports that can be accessed on each PRU.

Table 6. below shows which PRU-ICSS signals can be accessed on PocketBeagle and on which connector and pins on which they are accessible. Some signals are accessible on the same pins.

Use scroll bar at bottom of chart to see additional features in columns to the right. When printing this document, you will need to print this chart separately.

Table 6.2: PRU0 and PRU1 Access

																				Auxiliary PWM out					Auxiliary PWM out						
Note			UART Transmit Data	UART Clear to Send	UART Request to Send	UART Receive Data		UART Clear to Send	UART Request to Send								UART Transmit Data	UART Receive Data	MDIO CIK	Enhanced capture input or Auxiliary PWM out	MDIO Data				Enhanced capture input or Auxiliary PWM out						
Mode6	pr1_pru1_pru_r31_9 (Input)	pr1_pru1_pru_r31_11 (Input)								pr1_pru0_pru_r31_7 (Input)	pr1_pru1_pru_r31_15 (Input)	pr1_pru0_pru_r31_4 (Input)	pr1_pru1_pru_r31_14 (Input)	pr1_pru0_pru_r31_1 (Input)	pr1_pru1_pru_r31_10 (Input)	pr1_pru0_pru_r31_0 (Input)	pr1_pru0_pru_r31_16 (Input)	pr1_pru1_pru_r31_16 (Input)		pr1_pru0_pru_r31_15 (Input)		pr1_pru0_pru_r31_14 (Input)	pr1_pru0_pru_r30_14 (Output)	pr1_pru0_pru_r31_6 (Input)		pr1_pru0_pru_r31_3 (Input)		pr1_pru0_pru_r31_2 (Input)	pr1_pru0_pru_r30_15 (Output)	pr1_pru0_pru_r31_5 (Input)	pr1 pru1 pru r31 8 (Input)
Mode5	pr1_pru1_pru_r30_9 (Output)	pr1_pru1_pru_r30_11 (Output)					pr1_pru0_pru_r31_16 (Input)	pr1_uart0_cts_n (Input)	pr1_uart0_rts_n (Output)	pr1_pru0_pru_r30_7 (Output)	pr1_pru1_pru_r30_15 (Output)	pr1_pru0_pru_r30_4 (Output)	pr1_pru1_pru_r30_14 (Output)	pr1_pru0_pru_r30_1 (Output)	pr1_pru1_pru_r30_10 (Output)	pr1_pru0_pru_r30_0 (Output)	pr1_uart0_txd (Output)	pr1_uart0_rxd (Input)	pr1_mdio_mdclk	pr1_ecap0_ecap_capin_apwm_o	pr1_mdio_data			pr1_pru0_pru_r30_6 Output)		pr1_pru0_pru_r30_3 (Output)	pr1_pru1_pru_r31_16 (Input)	pr1_pru0_pru_r30_2 (Output)		pr1_pru0_pru_r30_5 (Output)	pr1 pru1 pru r30 8 (Output)
Mode4			pr1_uart0_txd (Output)	pr1_uart0_cts_n (Input)	pr1_uart0_rts_n (Output)	pr1_uart0_rxd (Input)																									
Mode3																									pr1_ecap0_ecap_capin_apwm_o						
SiP Ball	F2	E1	A14	A13	B13	B14	B4	B10	A10	C4	B12	A3	A12	A2	F1	A1	B11	A11	T7	Р7	R7	1е	P6	C3	C5	B1	A4	B2	R6	B3	F3
Processor Ball	R5	R6	A16	A17	B17	B16	D14	D18	D17	A14	E16	B12	E15	B13	۸5	A13	D15	D16	V12	U13	T13	V13	T12	D13	C18	C12	A15	D12	R12	C13	U5
Silkscreen	A6/87	68	SPI0_CS	SPIO_CLK	SPIO_MISO	SPIO_MOSI	20	I2C2_SDA	I2C2_SCL	PRU0_7	XT_0U	PRU0_4	UO_RX	PRU0_1	P1.10	PWM0A	I2C1_SCL	I2C1_SDA	65	47	64	46	48	PRU0_6	SPI1_CLK	PRU0_3	SPI1_CS	PRU0_2	45	PRU0_5	A5/86
Header.Pin	P1.02	P1.04	P1.06	P1.08	P1.10	P1.12	P1.20	P1.26	P1.28	P1.29	P1.30	P1.31	P1.32	P1.33	P1.35	P1.36	P2.09	P2.11	P2.17	P2.18	P2.20	P2.22	P2.24	P2.28	P2.29	P2.30	P2.31	P2.32	P2.33	P2.34	P2.35

Connectors

This section describes each of the connectors on the board.

7.1 Expansion Header Connectors

The expansion interface on the board is comprised of two 36 pin connectors. The two Expansion Header Connectors on PocketBeagle are labeled P1 and P2. The connections are a standard 100 mil distance so that they can be compatible with many standard expansion items. The silkscreen for the headers on the bottom of the board provides the easiest way to identify them. See Figure 41.

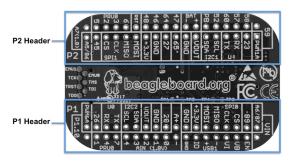


Fig. 7.1: Expansion Headers for PocketBeagle

All signals on the expansion headers are 3.3V unless otherwise indicated.

Note:

- Do not connect 5V logic level signals to these pins or the board will be damaged.
- DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL DAMAGE THE PROCESSOR AND VOID THE WARRANTY.
- NO PINS ARE TO BE DRIVEN UNTIL AFTER THE NRESET LINE GOES HIGH.

Figure 42 shows a color coded chart with an overview of the most popular functions of PocketBeagle's Expansion Header pins. The Header Pin tables in Sections 7.1.1 and 7.1.2 show the full pin assignments for each header.

7.2 P1 Header

Figure 43 shows the schematic diagram for the P1 Header.

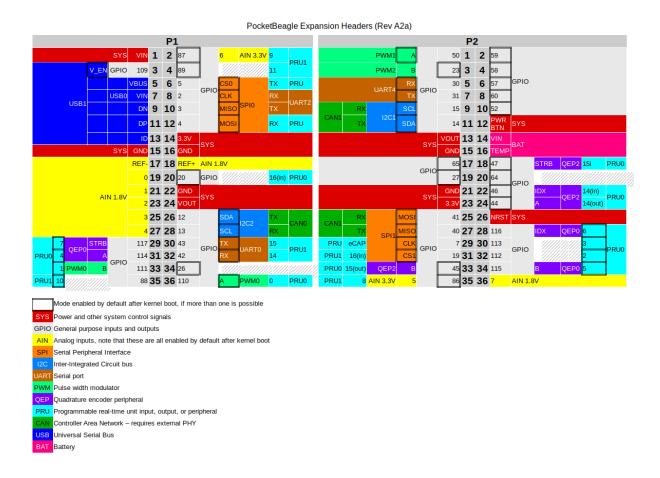
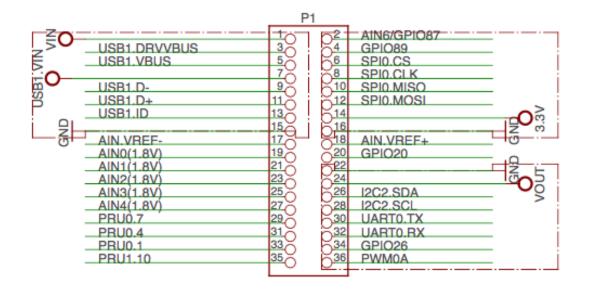



Fig. 7.2: Expansion Header Popular Functions - Color Coded

Use scroll bar at bottom of chart to see additional features in columns to the right. When printing this document you will need to print this chart separately.

7.2. P1 Header 45

Table 7.1: P1 Header Pinout

Header.Pin	Silkscreen	PocketBea-	Proc Ball	SiP Ball	Mode0	Mode1	Mode	Mode:3	Mode4	Mode5	Modes	Mode7
		gle wiring			(Name)							
P1.01	NIN	P1.01 (VIN)		P10 & R10 & T10	NIN							
P1.02	A6/87	P1.02 (AIN6/GPIO87)	A8	60	ain6							
P1.02	A6/87	P1.02 (AIN6/GPIO87)	R5	F2	lcd_hsync	gpmc_a9	gpmc_a2	pr1_edio_data_ir	prl_edio_data_ir prl_edio_data_o		prl_prul_pru_r3 prl_prul_pru_r3 gpio2_23	gpio2_23
P1.03	USB1_EN	P1.03 (USB1- DRVVBUS)	F15	M14	USB1_DRVVBUS							gpio3_13
P1.04	68	P1.04 (PRU1.11)	R6	E1	lcd_ac_bias_en	gpmc_al1	pr1_mii1_crs	pr1_edio_data_ir	pr1_edio_data_ir pr1_edio_data_o	prl_prul_pru_r3 prl_prul_pru_r3		gpio2_25
P1.05	USB1_VB	P1.05 (USB1- VBUS)	T18	M15	USB1_VBUS	•		•		٠		•
P1.06	SPIO_CS	P1.06 (SPI0- CS)	A16	A14	spi0_cs0	mmc2_sdwp	I2C1_SCL	ehrpwm0_synci	pr1_uart0_txd	pr1_edio_data_ir	pr1_edio_data_o	gpio0_5
P1.07	USB1_VI	P1.07 (VIN- USB)		P9 &R9 &T9	VIN-USB							
P1.08	SPI0_CLK	P1.08 (SPI0- CLK)	A17	A13	spi0_sclk	uart2_rxd	I2C2_SDA	ehrpwm0A	prl_uart0_cts_n prl_edio_sof		EMU2	gpio0_02
P1.09	USB1 -	P1.09 (USB1- DN)	R18	L16	USB1_DM							
P1.10	SPI0_MISO	P1.10 (SPI0- MISO)	817	813	spi0_d0	uart2_txd	I2C2_SCL	ehrpwm0B	pr1_uart0_rts_n	pr1_edio_latch_ir EMU3	EMU3	gpio0_3
P1.11	USB1 +	P1.11 (USB1- DP)	R17	L15	USB1_DP							
P1.12	SPI0_MOSI	P1.12 (SPI0- MOSI)	B16	B14	spi0_d1	mmc1_sdwp	I2C1_SDA	ehrpwm0_tripzor pr1_uart0_rxd	pr1_uart0_rxd	pr1_edio_data_ir	pr1_edio_data_o	gpio0_04
P1.13	USB1_ID	P1.13 (USB1- ID)	P17	L14	USB1_ID							
P1.14	+3.3V	P1.14 (VOUT- 3.3V)		F6&F7&G6& G7	VOUT-3.3V							
P1.15	USB1_GND	P1.15 (GND)			GND							
P1.16 P1.17	GND AIN(1.8V)-	P1.16 (GND) P1.17 (VREFN)	89	89	GND							
.18	AIN(1.8V)A+	P1.18 (VREFP)	B9	B7	VREFP							
P1.19	AIN(1.8V)0	P1.19 (AIN0- 1.8V)	B6	A8	ain0							
P1.20	20	P1.20 (PRU0.16)	D14	B4	xdma_event_intr	·	tclkin	clkout2	timer7	pr1_pru0_pru_r3 EMU3	ЕМИЗ	gpio0_20
P1.21	AIN(1.8V)1	P1.21 (AIN1-1.8V)	73	B8	ain1							
P1.22	GND	\leq			GND							
.23	AIN(1.8V)2	P1.23 (AIN2- 1.8V)	B7	B6	ain2							

	Mode6 Mode7			prl_uart0_cts_n prl_edc_latch0_i gpio0_12		prl_uart0_rts_n prl_edc_latchl_i gpio0_13	pr1_pru0_pru_r3 pr1_pru0_pru_r3 gpio3_21	r3 pr1_pru1_pru_r3 gpio1_11	prl_pru0_pru_r3 prl_pru0_pru_r3 gpio3_18	eCAP2_in_PWM2_pr1_pru_r3_pr1_pru1_pru_r3_gpio1_10	pr1_pru0_pru_r3 pr1_pru0_pru_r3 gpio3_15	gpio0_26	pr1_edio_data_ir pr1_edio_data_o pr1_pru1_pru_r3 pr1_pru1_pru_r3 gpio2_24	pr1_pru0_pru_r3 pr1_pru0_pru_r3 gpio3_14
	Mode5			pr1_uart0_cts_		pr1_uart0_rts_	pr1_pru0_pru_	eCAP1_in_PWM1_ pr1_pru1_pru_r3 pr1_pru1_pru_r3		_PWM2_pr1_pru1_pru_		ehrpwm2_tripzoi pr1_mii0_txen	data_o pr1_pru1_pru_	
	Mode4			spi1_cs0		spi1_cs1	xr1 EMU4	eCAP1_in_	clkx mmc0_sdwp	eCAP2_in_	mmc1_sdcd		data_ir pr1_edio_	mmc0_sdcd
	Mode3			I2C2_SDA		I2C2_SCL	kr3 mcasp1_axr1	I2C2_SCL	kr2 mcasp1_aclkx	I2C2_SDA	spi1_d0	2 mmc2_dat6		spi1_sclk
Table 7.1 - continued from previous page	Mode2			dcan0_tx		dcan0_rx	obe mcasp0_axr3	dcan0_rx	n mcasp0_axr2	dcan0_tx	•	l mmc1_dat2	pru_mii0_crs	•
7.1 - continued fr	Mode1			timer6		timer5	nclkx eQEP0_strobe	spi1_cs1	:lkr eQEP0A_in	spi1_cs0	x ehrpwm0B	0 lcd_data21	gpmc_a10	:lkx ehrpwm0A
Table	Mode0 (Name)	.6 & VOUT-5V	ain3	uart1_ctsn	ain4	uart1_rtsn	mcasp0_ahclkx	uart0_txd	mcasp0_aclkr	uart0_rxd	mcasp0_fsx	gpmc_ad10	lcd_pclk	mcasp0_aclkx
	SiP Ball	K6 & K7 & L6 & L7	90	B10	C7	A10	C4	B12	A3	A12	A2	R5	Ħ	A1
	Proc Ball	Ŀ	3- A7	.2- D18	4- C8	.2- D17	A14	.0- E16	B12	.0- E15	B13	111	٧2	A13
	PocketBea- gle wiring	P1.24 (VOUT- 5V)	P1.25 (AIN 1.8V)	P1.26 (I2C SDA)	P1.27 (AIN 1.8V)	P1.28 (I2C2- SCL)	P1.29 (PRU0.7)	P1.30 (UART TX)	P1.31 (PRU0.4)	P1.32 (UART RX)	P1.33 (PRU0.1)	P1.34 (GPI00.26)	P1.35 (PRU1.10)	P1.36 (PWM0A)
	Silkscreen	VOUT	AIN(1.8V)3	I2C2_SDA	AIN(1.8V)4	I2CZ_SCL	PRU0_7	XT_0U	PRU0_4	UO_RX	PRU0_1	26	P1.10	PWMOA
	Header.Pin	P1.24	P1.25	P1.26	P1.27	P1.28	P1.29	P1.30	P1.31	P1.32	P1.33	P1.34	P1.35	P1.36

7.2. P1 Header 47

7.3 P2 Header

Figure 44 shows the schematic diagram for the P2 Header.

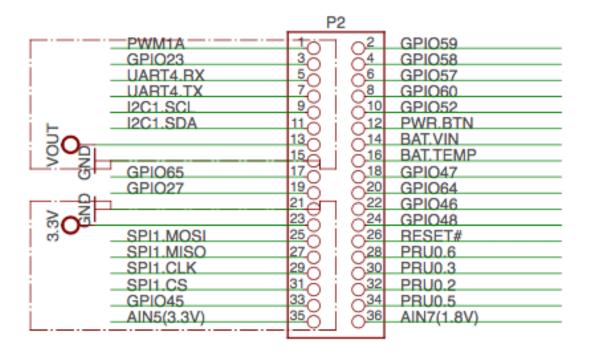


Fig. 7.3: P2 Header

Use scroll bar at bottom of chart to see additional features in columns to the right. When printing this document you will need to print this chart separately.

continues on next page

4
⋾
2
\subseteq
亩
Ė
ŏ
ĕ
a
Ĭ
P2
7
7
<u>u</u>
9
酉

		ω	7	m	9	0	2	1	00	22	0	4						1	5P	7	0	4	t		2
	Mode7	gpio1_18	gpio1_27	gpio0_23	gpio1_26	gpio0_30	gpio1_25	gpio0_31	gpio1_28	3 gpio0_15	gpio1_20	3 gpio0_1						gpio2_01	3 gpio1_15P	gpio0_27	gpio2_00	3 anio1 14			3 gpio1_1
	Mode6	ehrpwm1A	mcasp0_axr1	•	mcasp0_axr0	uart4_rxd	mcasp0_fsx	uart4_txd	mcasp0_aclkr	pr1_pru0_pru_r3	eQEP1A_in	pr1_pru1_pru_r3 gpio0_14						mcasp0_fsr	. pr1_pru0_pru_r3	•	EMU4	מיושט סיים ניים			pr1_pru0_pru_r3 gpio1_12
	Mode5	pr1_mii1_txd2	pr1_mii1_rxer	pr1_mii0_col	pr1_mii1_rxdv	pr1_mii1_col	pr1_mii_mr1_clk	pr1_mii1_txen	pr1_mii1_rxlink	pr1_uart0_txd	pr1_mii1_txd0	pr1_uart0_rxd						pr1_mdio_mdclk mcasp0_fsr	pr1_ecap0_ecap.	pr1_mii0_txd3	pr1_mdio_data	or1 mii0 txd0			pr1_mii0_txd2
	Mode4	gpmc_a18	gpmc_a27	ehrpwm2B	gpmc_a26	mmc1_sdcd	gpmc_a25	mmc2_sdcd	gpmc_dir	•	gpmc_a20	•						pr1_mii1_crs	eQEP2_strobe	ehrpwm0_synco	pr1_mii0_crs	POFP2 index	בלרו ל		eQEP2A_in
	Mode3	mmc2_dat1	rmii2_rxd0	mmc2_dat5	rmii2_rxd1	rmii2_crs_dv	mmc2_dat7 / rmii2 crs dv	rmii2_rxerr	mmc2_dat3	12C1_SCL	rmii2_txd1	I2C1_SDA						mmc2_clk	mmc2_dat3	mmc2_dat7	mmc2_cmd	mmc2 dat2	7,700		mmc2_dat0
inout	Mode2	rgmii2_td3	rgmii2_rd0	mmc1_dat1	rgmii2_rd1	gpmc_csn4	rgmii2_rd2	gpmc_csn5	guso_cmd6	dcan1_rx	rgmii2_td1	dcan1_tx						c gpmc_wait1	mmc1_dat7	mmc1_dat3	rmii2_crs_dv	mmc1 dat6	2000		mmc1_dat4
lable 7.2: P2 Header Pinout	Mode1	gmii2_txd3	gmii2_rxd0	lcd_data22	gmii2_rxd1	gmii2_crs	gmii2_rxd2	gmii2_rxerr	gmii2_col	mmc2_sdwp	gmii2_txd1	mmc1_sdwp						lcd_memory_clk gpmc_wait1	lcd_data16	lcd_data20	gpmc_a3	Icd data17	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		lcd_data19
lab	Mode0 (Name)	gpmc_a2	gpmc_a11	gp_cdg	gpmc_a10	gpmc_wait0	gpmc_a9	gpmc_wp	gpmc_beln	uart1_txd	gpmc_a4	uart1_rxd	POWER	VOUT-5V	VIN-BAT	GND	BAT-TEMP	gpmc_clk	gpmc_ad15	gpmc_ad11	gpmc_csn3	GND gnmc ad14	ad t	VOUT-3.3V	gpmc_ad12
	SiP Ball	P12	T16	P5	R15	P15	T15	R16	N14	B11	R13	A11	111	K6, K7, L6, L7	P8, R8, T8		9N	77	P7	T 5	R7	TG	2	F6 & F7 & G6 & G7	P6
	Proc Ball	U14	V17	110	T16	T17	016	117	018	D15	R14	D16						V12	U13	U12	T13	V13	71		T12
	PocketBea- gle wiring	P2.01 (PWM1A)	P2.02 (GPIO1.27)	P2.03 (GPIO0.23)	P2.04 (GPIO1.26)	P2.05 (UART4-RX)	P2.06 (GPIO1.25)	P2.07 (UART4- TX)	P2.08 (GPIO1.28)	P2.09 (I2C1- SCL)	P2.10 (GPIO1.20)	P2.11 (I2C1- SDA)	P2.12 (POWER BTN)	P2.13 (VOUT- 5V)	P2.14 (VIN-BAT)	P2.15 (GND)	P2.16 (BAT- TEMP)	P2.17 (GPI02.1)	P2.18 (PRU0.15i)	P2.19 (GPIO0.27)	P2.20 (GPI02.0)	P2.21 (GND)	(GPIO1.14)	P2.23 (VOUT- 3.3V)	P2.24
	Silkscreen	PWM1A	59	23	58	U1_RX	57	U1_TX	09	I2C1_SCL	52	I2C1_SDA	ВВ	VOUT	BAT +	GND	BAT -	65	47	27	64	GND 46	o t	+3.3V	48
	Header.Pin	P2.01	P2.02	P2.03	P2.04	P2.05	P2.06	P2.07	P2.08	P2.09	P2.10	P2.11	P2.12	P2.13	P2.14	P2.15	P2.16	P2.17	P2.18	P2.19	P2.20	P2.21	77:7	P2.23	P2.24

7.3. P2 Header 49

7.4 mikroBUS socket connections

mikroBUS and, by extension "mikroBUS Click boards", are trademarks of MikroElektronika. We do not make any claims of compatibility nor adherence to their specification. We've just seen that many of the Click boards "just work".

The Expansion Headers on PocketBeagle have been designed to accept up to two Click Boards added to the header pins at the same time. This provides an exciting opportunity to add functionality easily to PocketBeagle from 'hundreds of existing add-on Click Boards'.

The mikroBUS standard comprises a pair of 1×8 female headers with a standardized pin configuration. The pinout (always laid out in the same order) consists of three groups of communications pins (SPI, UART and I2C), six additional pins (PWM, Interrupt, Analog input, Reset and Chip select), and two power groups (+3.3V and 5V).

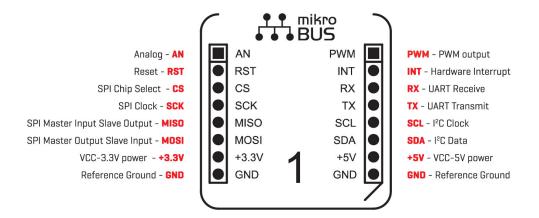


Fig. 7.4: mikroBUS

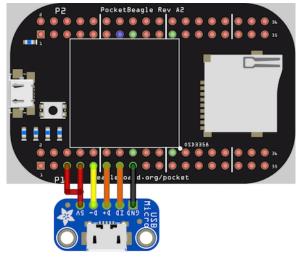

The Expansion Header pin alignment enables 2 Click Boards on the top side of PocketBeagle using the inside rails of the headers. This leaves the outside rails open to be accessed from either the top or the bottom of PocketBeagle. Place each Click Board into the position shown in Figure 46, with one Click Board facing each direction. When choosing Click boards, make sure you are checking that they meet the 3.3V requirements for PocketBeagle. A growing number of community members are trying out various Click Boards and posting results on the 'PocketBeagle Wiki mikroBus Click Boards page'.

Fig. 7.5: PocketBeagle Both Headers

7.5 Setting up an additional USB Connection

You can add an additional USB connection to PocketBeagle easily by connecting a microUSB breakout. By default in the current software, the system should be configured to use this port as a host. Keep up to date on this project on the 'PocketBeagle Wiki FAQ'.

fritzing

PocketBeagle Cape Support

This is a placeholder for recommendations for those building their own PocketBeagle Cape designs. If you'd like to join the conversation 'check out the discussion on the forum for PocketBeagle'

See also PocketBeagle under 'BeagleBoard Capes'

PocketBeagle Mechanical

9.1 9.1 Dimensions and Weight

Size: 2.21" x 1.38" (56mm x 35mm)

Max height: .197" (5mm)
PCB size: 55mm x 35mm

PCB Layers: 4

PCB thickness: 1.6mm RoHS Compliant: Yes

Weight: 10g

Rough model can be found at PocketBeagle models

Additional Pictures



Fig. 10.1: PocketBeagle Front BW



Fig. 10.2: PocketBeagle Back BW

Support Information

All support for PocketBeagle design is through BeagleBoard.org community at BeagleBoard.org forum.

11.1 Hardware Design

Design documentation can be found on the wiki. https://git.beagleboard.org/beagleboard/pocketbeagle/ Including:

- Schematic in PDF https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/PocketBeagle_sch.pdf
- Schematic and layout in EAGLE https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/ EAGLE
- Schematic and layout in KiCAD https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/ KiCAD
- Bill of Materials https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/PocketBeagle_BOM.csv
- PocketBeagle docs.

11.2 Software Updates

It is a good idea to always use the latest software. Instructions for how to update your software to the latest version can be found at:

Download the latest software files from www.beagleboard.org/distros

11.3 Export Information

• ECCN: EAR99

• CCATS: G173833

• Documentation: PocketBeagle_Export_Classification.pdf

11.4 RMA Support

If you feel your board is defective or has issues and before returning merchandise, please seek approval from the manufacturer using beagleboard.org/support/rma. You will need the manufacturer, model, revision and serial number of the board.

11.5 Getting Help

If you need some up to date troubleshooting techniques, the Wiki is a great place to start $PocketBeagle\ wiki.$

If you need professional support, check out beagleboard.org/resources.